PH4 Mark Scheme - January 2010

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details
\[
\begin{aligned}
\& p V=n R T(\text { subs })(1) \\
\& n=\frac{60 \times 10^{3} \times 0.05}{8.31 \times 278}(1)[=1.2986]
\end{aligned}
\]
\[
\begin{array}{l|l}
\text { Either } \& \text { or } \\
p=\frac{1}{3} \rho \overline{c^{2}}(1)^{*} \& p V=\frac{1}{3} N m \overline{c^{2}}(1) \\
\rho=\frac{m}{V} \text { or } \frac{0.171}{0.05}(1) \& v=0.05 \mathrm{~m}^{3} \text { and } N m=0.171(\\
c_{\mathrm{rms}}=229 \mathrm{~m} \mathrm{~s}^{-1}(1) \& c_{\mathrm{rms}}=229 \mathrm{~m} \mathrm{~s}^{-1}(1)
\end{array}
\] \\
* Mark lost for incorrect substitution (e.g. of \(\rho\)) unless final root taken. \\
Division of \(m\) by 1.3 (1) \\
Molar mass \(=0.132 \mathrm{~kg} / 132 \mathrm{~g}((\) unit \())(1)\)
\end{tabular}} \& Marks Available \\
\hline 3 \& (a)
(b) \& (i) \& \& 2
\([7]\) \\
\hline 4. \& (a)
(b)

(c)
(c)
(d) \& (i)
(ii)
(i)
(ii)
(i)

(ii) \& | ΔU - change / increase in internal energy |
| :--- |
| Q - Heat supplied to the gas /system |
| W - Work done by the gas / system |
| Marking - all italic terms (1); all underlined terms (1) $\begin{aligned} W & =p \Delta V \text { or area under graph (1) } \\ & =60000 \times 50 \times 10^{-3} \\ & =3000 \mathrm{~J}(1) \end{aligned}$ |
| Use of ΔT or $U_{2}-U_{1}(1)$ $\Delta U=4500 \mathrm{~J}(1)$ |
| 0 |
| Temperature decreases / gas cools / ΔU-ve (1) Heat flows out / Q-ve (1) [not 'decrease in heat'] |
| Returns to same temperature / point / $p, V, T(1)$ [or internal energy depends only on T [accept $p, V, T]]$ |
| attempt at closed area or AB-CD (1) [or by impl.] $W[=20000 \times 0.05]=1000 \mathrm{~J}(1)$ $Q=1000 \mathrm{~J}(1)$ | \& 2

2
1
2
2
1
3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details
\[
\begin{aligned}
\& g=\frac{G M}{r^{2}}(1)(\text { subs })=1.63 \mathrm{~m} \mathrm{~s}^{-2} / \mathrm{N} \mathrm{~kg}^{-1}((\text { unit }))(1) \\
\& F=m g \text { or } F=\frac{G M m}{r^{2}}[\text { or by impl. }](1) \\
\& F=3.25 \mathrm{~N}(1) \\
\& \mathrm{KE}=\left[1 / 2 m v^{2}\right]=1.96 \mathrm{MJ}
\end{aligned}
\]
\[
\begin{aligned}
\text { Gravitational PE } \& =[-] \frac{G M m}{r}(\text { subs })\left[\text { or } V=-\frac{G M}{r} \text { and } \mathrm{PE}=m V\right](1) \\
\& =-\frac{6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 2}{1.74 \times 10^{6}}(1)[=-5.635 \mathrm{MJ}]
\end{aligned}
\] \\
[no sign penalty here] \\
Total incident energy \(=-3.7 \mathrm{MJ}[-3.675 \mathrm{MJ}][\) e.c.f.](1)
\[
[-] 3.7 \mathrm{MJ}=[-] \frac{G M m}{r}(1)
\] \\
\(r\left[=\frac{G M m}{3.7 \times 10^{6}}\right]=2.67 \times 10^{6} \mathrm{~m}\) [or by impl.](1) \\
height \(=0.93 \times 10^{6} \mathrm{~m}(1)\) \\
[Errors from mistake over signs \(\rightarrow-1 ; 0.60 \times 10^{6} \mathrm{~m}\) arising from use of \(m g h\) scores 1 only]
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marks \\
Available \\
2 \\
2 \\
1 \\
2 \\
4 \\
[11]
\end{tabular}} \\
\hline 5 \& (a) \& (i)
(ii)
(i)
(ii)

(iii) \& \& \\
\hline 6 \& (a)
(b)

(c) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)

 \&

$$
F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}}(\text { subs })(1)[\text { or by impl. }]=2.33 \times 10^{-7} \mathrm{~N}(1)
$$ \\

Arrows drawn from \mathbf{P} directed away from the $2+3.6 \mathrm{nC}$ charges [Vertically] up[wards] or correct double arrow shown [e.c.f.]

$$
\begin{aligned}
& E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}(\text { subs })(1)[\text { or by impl. }]=129.5 \mathrm{~V} \mathrm{~m}^{-1}(1) \\
& E_{\text {Total }}=\sqrt{129.5^{2}+129.5^{2}} \text { or } 2 \times 130 \sin 45^{\circ} / \cos 45^{\circ}(1)
\end{aligned}
$$ \\

[freestanding, i.e. $E_{\text {Tot }}=E_{\text {indiv }} \times \sqrt{2}$ gets $3^{\text {rd }}$ mark]

$$
=183.1 \mathrm{~V} \mathrm{~m}^{-1} / \mathrm{N} \mathrm{C}^{-1}((\text { unit) }))(1)[91.6 \mathrm{~V} \text { loses only } 1 \text { mark }]
$$ \\

Potential energy $=\frac{Q q}{4 \pi \varepsilon_{0} r}$ or $V=\frac{Q}{4 \pi \varepsilon_{0} r}($ subs $)(1)$ \\
attempt at adding both PEs or potentials as scalars (1) \\
Work done $=1.295 \times 10^{-7} \mathrm{~J}(1)$ \\
[$0.65 \times 10^{-7} \mathrm{~J}$ loses only 1 mark]
\end{tabular} \& 1

1

4
4

3
[11] \\
\hline
\end{tabular}

Question		Marking details	Marks Available
7		Objects [seem to] travel too fast at large distances from centre (1) Either: As orbital speed $\propto \sqrt{m}$ ($m=$ enclosed mass) [accept v increases as m increases] (1) this suggests that the galaxy has extra [or hidden] mass (1). Extra mass related to dark matter. Or: Far from centre, the mass within the orbit should be \sim constant (1) so orbital speed v should be $\propto \frac{1}{\sqrt{r}}$ (theoretical) (1) So enclosed mass $\propto \sqrt{r}$ for constant $v(1)$	
Alt: Observed speeds too large [for objects to remain in galaxy] (1) \ldots soequation shows M is 'too large' (1) Speed doesn't fall off at large distance] as theory suggests so mass extends beyond visible galaxy (1) Extra mass attributed to dark matter (1)	[4]		

Question			Marking details	Marks Available
8	(a)		Reasonable orbit of star and companion in mutual orbit shown with Earth shown or direction towards Earth (1). Star orbits the centre of mass[accept 'common point'] [of the binary system] (1) Sensible comment relating radial velocity and position in diagram (1)[e.g. - in position shown - red shift - longer wavelength; $1 / 2$ orbit later - towards Earth so blue shift]	3
	(b)	(i) (ii)	$\begin{aligned} & 1700[\pm 50] \mathrm{m} \mathrm{~s}^{-1} \\ & \frac{\Delta \lambda}{\lambda}=\frac{v}{c}(1)(\text { subs } v \text { and } c)[\text { or by impl. }] \\ & \Delta \lambda\left[=\frac{1700[\mathrm{ecf}] \times 600 \times 10^{-9}}{3 \times 10^{8}}\right]=3.4 \times 10^{-12} \mathrm{~m}(1) \end{aligned}$ [No penalty for subsequent addition of $\Delta \lambda$ to λ]	1 2
	(c)	(i) (ii)	$\begin{aligned} & 170[\pm 2] \text { days } \\ & v=\frac{2 \pi r}{T}\left[\text { or } v=\omega r \text { and } \omega=\frac{2 \pi}{T}\right](1) \\ & r=\frac{1700 \times 170 \times 24 \times 60 \times 60}{2 \pi}[\text { e.c.f. }]\left[=3.97 \times 10^{9}\right] \mathrm{m}(1) \end{aligned}$	1 2
	(d)		$\begin{aligned} & T=2 \pi \sqrt{\frac{d^{3}}{G\left(m_{1}+m_{2}\right)}}(\text { subs })(1) \\ & d=\sqrt[3]{\frac{T^{2} G M}{4 \pi^{2}}}=6.63 \times 10^{10} \mathrm{~m}(1) \end{aligned}$ $\begin{array}{\|l\|l} \text { Either } & \begin{array}{l} \text { Or } \\ m_{1} r_{1}=m_{2} r_{2}(1) \\ r_{1}=\frac{m_{1}}{m_{1}+m_{2}} d(\text { subs })(1) \end{array} \\ m_{2} \square \frac{m_{1} r_{1}}{d} \text { since } d \square r_{2} \\ m_{1}=\frac{m_{1} r_{1}}{d-r_{1}}=5.1 \times 10^{28} \mathrm{~kg}(1) & \begin{array}{l} m_{2}=4.8 \times 10^{28} \mathrm{~kg}(1) \\ {\left[\text { or } 4.4 \times 10^{28} \mathrm{~kg} \text { if } 7 \times 10^{10} \mathrm{~m}\right.} \\ \text { used }] \end{array} \end{array}$	2
				[13]

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

