Marking details	Marks Available	
Acceleration \propto displacement [from a fixed point] (1) and directed towards a fixed point (1) Or $a = [-]\omega^2 x$ (1); - sign and defined a and x , ω^2 a constant(1)	2	
(i) $T = 2\pi \sqrt{\frac{m}{k}}$ [or by impl.](1) $T^2 = 4\pi^2 \frac{m}{k}$, i.e. correct squaring [or by impl.](1) m = 0.127 kg (1)	3	
(ii) $\omega \left[= \frac{2\pi}{T} \right] = \frac{2\pi}{0.42 \text{ s}} \checkmark [= 14.96 \text{ [rad] s}^{-1}]$	1	
(i) (i) $v_{\text{max}} = \omega A (\mathbf{subs})(1) = 0.194 \text{ m s}^{-1} [\text{accept } 0.19 \text{ or } 0.20] (1)$ $a_{\text{max}} = [-]\omega^2 A (\mathbf{subs})(1) = 2.91 \text{ m s}^{-2} (1)$ [no penalty for minus sign in answer; no 2^{nd} penalty for 10^2 error]	2 2	
(i) (i) (ii) $\begin{bmatrix} {}^{T}\!\!/_{4} \text{ or } 0.105 \text{ s} \\ \textbf{Either} \\ a = [-] 2.91 \sin \omega t (1) [\text{ or impl.}] \\ \omega t = \sin^{-1}\!\left(\frac{2.9}{2.91}\right) (1) [\text{ or impl.}] \\ t = 0.054 \text{ s} (1) \\ [-0.054 \text{ s} loses 2^{\text{nd}} \text{ mark, or equivalent wrong sector slip, e.g.} \end{bmatrix} \begin{bmatrix} \text{or} \\ a = -\omega^{2}x \rightarrow x = 0.0094 \text{ m} (1) \\ 0.0094 = 0.13 \sin \omega t (\textbf{subs}) (1) \\ t = 0.054 \text{ s} (1) \\ t = 0.054 \text{ s} (1) \\ 0.0094 = 0.13 \sin \omega t (\textbf{subs}) (1) \\ t = 0.054 \text{ s} (1) \\ t = 0.054 \text{ s} (1) \\ 0.0094 = 0.13 \sin \omega t (\textbf{subs}) (1) \\ t = 0.054 \text{ s} (1) \\ t = 0.054 \text{ s} (1) \\ t = 0.054 \text{ s} (1) \\ 0.0094 = 0.13 \sin \omega t (\textbf{subs}) (1) \\ t = 0.054 \text{ s} (1) \\ t = 0.054 $	1	
4.2 - 0.054 or even $2.1 - 0.054$ etc.]	3	
	[14]	
$p\left[=\frac{h}{\lambda}\right] = \frac{6.63 \times 10^{-34} \text{ J s}}{620 \times 10^{-9} \text{ m}} (\checkmark) [= 1.07 \times 10^{-27} \text{ kg m s}^{-1}]$	1	
1.1 × 10 ⁻²⁷ = [±] 1.1 × 10 ⁻²⁷ + mv [i.e. accept incorrect sign] (1) 2.2 × 10 ⁻²⁷ = 1.67 × 10 ⁻²⁷ v (1) v = 1.28 m s ⁻¹ (1) [mv = 1.1 × 10 ⁻²⁷ → v = 0.64 m s ⁻¹ - 1 mark only]	3	
(i) more energy after collision (1) since photon energies are the same / energy increased by hydrogen KE or $\frac{1}{2}mv^2$ (1)	2	
(ii) reflected photon has longer wavelength or red shift occurs [or converse argument or frequency argument]	1	

PH4 Mark Scheme – January 2010

Question

(a)

(b)

(c)

(d)

2

(a)

(b)

(c)

1

PMT

[7]

Question			Marking details		Marks Available	
3	(a)		$pV = nRT (\mathbf{subs})(1)$ $n = \frac{60 \times 10^3 \times 0.05}{8.31 \times 278} (1) [=1.2986]$		2	
	(b)	(i)	Either $p = \frac{1}{3}\rho \overline{c^2}(1)^*$ $\rho = \frac{m}{V} \text{ or } \frac{0.171}{0.05}(1)$ $c_{\text{rms}} = 229 \text{ m s}^{-1}(1)$ * Mark lost for incorrect substitution taken.	or $pV = \frac{1}{3} Nm c^{2}$ (1) $v = 0.05 \text{ m}^{3}$ and $Nm = 0.171$ (1) $c_{\text{rms}} = 229 \text{ m s}^{-1}$ (1) on (e.g. of ρ) unless final root	3	
		(ii)	Division of <i>m</i> by 1.3 (1) Molar mass =0.132 kg / 132 g ((u r	it)) (1)	2	
					[7]	
4.	(a) $\Delta U - \underline{\text{change}} / \underline{\text{increase}} \text{ in internal energy} \\ Q - Heat \text{ supplied } \underline{\text{to the gas / system}} \\ W - Work \underline{\text{done by the gas / system}} \\ Marking - all italic \text{ terms (1); all underlined terms (1)} \\ \end{pmatrix}$		<u>m</u>	2		
	<i>(b)</i>	(i) $W = p\Delta V$ or area under graph (1) = 60 000 × 50 × 10 ⁻³ = 3 000 J (1)			2	
		(ii)	Use of ΔT or $U_2 - U_1(1)$ $\Delta U = 4500 \text{ J}(1)$		2	
(c) (i) 0			1			
		(ii)	Temperature decreases / gas cools Heat flows out / Q –ve (1) [not 'de		2	
	(d) (i) Returns to same temperature / point / p , V , T (1) [or internal energy depends only on T [accept p , V , T]]			1		
		(ii)	attempt at closed area or AB – CD $W = 20\ 000 \times 0.05 = 1000 \text{ J} (1)$ Q = 1000 J (1)	(1) [or by impl.]	3	
			$\mathcal{L} = 1000 \mathrm{J} (1)$		[13]	

	Marking details	Marks Available
(i)	$g = \frac{GM}{r^2}$ (1) (subs) = 1.63 m s ⁻² / N kg ⁻¹ ((unit)) (1)	2
(ii)	$F = mg \text{ or } F = \frac{GMm}{r^2} \text{ [or by impl.] (1)}$	
	F = 3.25 N(1)	2
(i)	$KE = [\frac{1}{2} mv^2] = 1.96 MJ$	1
(ii)	Gravitational PE = $[-]\frac{GMm}{r}$ (subs)[or $V = -\frac{GM}{r}$ and PE = mV] (1) = $-\frac{6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 2}{1.74 \times 10^6}$ (1) [= -5.635 MJ] [no sign penalty here]	2
(iii)	Total incident energy = -3.7 MJ [-3.675 MJ] [e.c.f.](1) $[-]3.7 \text{ MJ} = [-] \frac{GMm}{r} (1)$ $r \left[= \frac{GMm}{3.7 \times 10^6} \right] = 2.67 \times 10^6 \text{ m [or by impl.](1)}$	
	$F \left[= \frac{1}{3.7 \times 10^6} \right] = 2.07 \times 10^6 \text{ m [of by mpi.](1)}$	4

PMT

			[no sign penalty here]	
		(iii)	Total incident energy = -3.7 MJ [-3.675 MJ] [e.c.f.](1) $[-]3.7 \text{ MJ} = [-] \frac{GMm}{r} (1)$	
			$r\left[=\frac{GMm}{3.7\times10^{6}}\right] = 2.67\times10^{6} \text{ m [or by impl.](1)}$ height = 0.93 ×10 ⁶ m (1) [Errors from mistake over signs $\rightarrow -1$; 0.60 × 10 ⁶ m arising from use of <i>mgh</i> scores 1 only]	4
				[11]
6	(a)		$F = \frac{Qq}{4\pi\varepsilon_0 r^2} (\text{subs})(1) [\text{or by impl.}] = 2.33 \times 10^{-7} \text{N} (1)$	2
	(b)	(i) (ii) (iii)	Arrows drawn from P directed away from the 2 +3.6 nC charges [Vertically] up[wards] or correct double arrow shown [e.c.f.] $E = -\frac{Q}{Q} = (\text{subc})(1)$ [or by impl] = 120.5 V m ⁻¹ (1)	1 1
		(111)	$E = \frac{Q}{4\pi\varepsilon_0 r^2} (\mathbf{subs})(1) \text{ [or by impl.]} = 129.5 \text{ V m}^{-1} (1)$ $E_{\text{Total}} = \sqrt{129.5^2 + 129.5^2} \text{ or } 2 \times 130 \sin 45^\circ / \cos 45^\circ (1)$ [freestanding, i.e. $E_{\text{Tot}} = E_{\text{indiv}} \times \sqrt{2} \text{ gets } 3^{\text{rd}} \text{ mark}]$ $= 183.1 \text{ V m}^{-1} / \text{ N C}^{-1} ((\mathbf{unit})) (1) [91.6 \text{ V loses only 1 mark}]$	4
	(c)		Potential energy = $\frac{Qq}{4\pi\varepsilon_0 r}$ or $V = \frac{Q}{4\pi\varepsilon_0 r}$ (subs)(1)	
			attempt at adding both PEs or potentials <u>as scalars</u> (1) Work done = 1.295×10^{-7} J (1)	3
			$[0.65 \times 10^{-7} \text{ J loses only 1 mark}]$	[11]

Question

(a)

(b)

5

Question	Marking details	Marks Available
7	Objects [seem to] travel too fast at large distances from centre (1)Either:As orbital speed $\propto \sqrt{m}$ (m = enclosed mass) [accept v increases as m increases] (1) this suggests that the galaxy has extra [or hidden] mass(1).Extra mass related to dark matter. Or :Far from centre, the mass within the orbit should be ~ constant (1)so orbital speed v should be $\propto \frac{1}{\sqrt{r}}$ (theoretical) (1)So enclosed mass $\propto \sqrt{r}$ for constant v (1) Alt: Observed speeds too large [for objects to remain in galaxy] (1)so equation shows M is 'too large' (1)Speed doesn't fall off [at large distance] as theory suggests so massextends beyond visible galaxy (1)Extra mass attributed to dark matter (1)	4
		[4]

Question			Marking details		Marks Available
8	<i>(a)</i>		Reasonable orbit of star and companion in mutual orbit shown with Earth shown or direction towards Earth (1). Star orbits the centre of mass[accept 'common point'] [of the binary system] (1) Sensible comment relating radial velocity and position in diagram (1)[e.g. – in position shown – red shift – longer wavelength; ¹ / ₂ orbit later – towards Earth so blue shift]	3	
	<i>(b)</i>	(i)	$1700 \ [\pm 50] \ \mathrm{m \ s^{-1}}$		1
		(ii)	$\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$ (1) (subs v and c)[or by in	npl.]	
			$\Delta \lambda \left[= \frac{1700[\text{ecf}] \times 600 \times 10^{-9}}{3 \times 10^8} \right] = 3.4$ [No penalty for subsequent addition		2
	(c)	(i)	170 [± 2] days		1
			$v = \frac{2\pi r}{T} [\text{or } v = \omega r \text{ and } \omega = \frac{2\pi}{T}]$ $r = \frac{1700 \times 170 \times 24 \times 60 \times 60}{2\pi} [\text{e.c.f.}]$		2
	(d) $T = 2\pi \sqrt{\frac{d^3}{G(m_1 + m_2)}} \text{ (subs)(1)}$ $d = \sqrt[3]{\frac{T^2 G M}{4\pi^2}} = 6.63 \times 10^{10} \text{ m (1)}$			2	
			$\sqrt{4\pi^2}$	Or	2
			$r_{1} = \frac{m_{1}}{m_{1} + m_{2}} d (\mathbf{subs})(1)$ $m_{2} = \frac{m_{1}r_{1}}{d - r_{1}} = 5.1 \times 10^{28} \text{ kg} (1)$	$m_1 r_1 = m_2 r_2 (1)$ $m_2 \Box \frac{m_1 r_1}{d} \text{ since } d \Box r_2$ $m_2 = 4.8 \times 10^{28} \text{ kg} (1)$	
				[or 4.4×10^{28} kg if 7×10^{10} m used]	2
					[13]

GCE Physics - New MS - January 2010

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>